A complete, multi-level conformational clustering of antibody complementarity-determining regions
نویسندگان
چکیده
Classification of antibody complementarity-determining region (CDR) conformations is an important step that drives antibody modelling and engineering, prediction from sequence, directed mutagenesis and induced-fit studies, and allows inferences on sequence-to-structure relations. Most of the previous work performed conformational clustering on a reduced set of structures or after application of various structure pre-filtering criteria. In this study, it was judged that a clustering of every available CDR conformation would produce a complete and redundant repertoire, increase the number of sequence examples and allow better decisions on structure validity in the future. In order to cope with the potential increase in data noise, a first-level statistical clustering was performed using structure superposition Root-Mean-Square Deviation (RMSD) as a distance-criterion, coupled with second- and third-level clustering that employed Ramachandran regions for a deeper qualitative classification. The classification of a total of 12,712 CDR conformations is thus presented, along with rich annotation and cluster descriptions, and the results are compared to previous major studies. The present repertoire has procured an improved image of our current CDR Knowledge-Base, with a novel nesting of conformational sensitivity and specificity that can serve as a systematic framework for improved prediction from sequence as well as a number of future studies that would aid in knowledge-based antibody engineering such as humanisation.
منابع مشابه
Conformational Correction Mechanisms Aiding Antigen Recognition by a Humanized Antibody
The crystal structure of the complex between hen egg lysozyme and the Fv fragment of a humanized antilysozyme antibody was determined to 2.7-A resolution. The structure of the antigen combining site in the complex is nearly identical to that of the complexed form of the parent mouse antibody, D1.3. In contrast, the combining sites of the unliganded mouse and humanized antilysozymes show moderat...
متن کاملStudying the Conformational and Functional Impact of Chemical Degradations in the Antibody Complementarity-Determining Regions Using Hydrogen Deuterium Exchange Mass Spectrometry and ELISA
متن کامل
Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution.
The 2.8 A resolution three-dimensional structure of a complex between an antigen (lysozyme) and the Fab fragment from a monoclonal antibody against lysozyme has been determined and refined by x-ray crystallographic techniques. No conformational changes can be observed in the tertiary structure of lysozyme compared with that determined in native crystalline forms. The quaternary structure of Fab...
متن کاملEpitope recognition by diverse antibodies suggests conformational convergence in an antibody response.
Crystal structures of distinct mAbs that recognize a common epitope of a peptide Ag have been determined and analyzed in the unbound and bound forms. These Abs display dissimilar binding site structures in the absence of the Ag. The dissimilarity is primarily expressed in the conformations of complementarity-determining region H3, which is responsible for defining the epitope specificity. Inter...
متن کاملPyIgClassify: a database of antibody CDR structural classifications
Classification of the structures of the complementarity determining regions (CDRs) of antibodies is critically important for antibody structure prediction and computational design. We have previously performed a clustering of antibody CDR conformations and defined a systematic nomenclature consisting of the CDR, length and an integer starting from the largest to the smallest cluster in the data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014